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Abstract

A theoretical approach is developed to obtain the natural frequencies and the mode shapes of annular
cavities that have locally non-uniform media. The equation of motion is derived based on a special form of
the wave equation that is capable of representing the variation of material properties with position, and the
unit step function is used in the equation to express the local non-uniformity of the media. The Laplace
transform is adopted in eigenvalue analysis to calculate the natural frequencies and the normal mode
shapes of the annular cavities. The validity of the presented method is verified through finite element
analysis and experiments. Parametric studies are performed to find out the relation between the acoustic
characteristics of the cavity and the local deviation of the media, and the acoustic characteristics are
explained in terms of the mass and stiffness effect of the local deviation in an annular cavity upon the
natural vibration characteristics.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

The vibration or acoustic problems of cylinder-shaped machines are frequently caused by the
resonance in the interior cylindrical cavities. Generally, the cylindrical cavities in the machines are
not perfectly axisymmetric but locally asymmetric, or have non-uniform distribution of medium,
making these problems difficult to analyze.
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Acoustic problems of this type are similar to vibration problems of membranes and many
studies have been made mainly in inhomogeneous membranes. Gottlieb [1] investigated the
vibrations of rectangular stepped-density membranes and the relationship between the density
ratio and the natural frequency. Cortinez and Laura [2] also studied the vibrations of rectangular
membranes by using the Kantorovich method and compared eigenvalues in variation of density
ratio, non-homogeneous area ratio and aspect ratio of a rectangular membrane. The free
vibrations of a rectangular membrane with unidirectional and smoothly varying inhomogeneity
were investigated by means of the approximate analytical method [3] and the optimized Galerkin–
Kantorovich and the differential quadrature method [4]. Also, the analyses of circular and
annular membranes with non-uniform radial density were made in the Refs. [5–7]. In Ref. [5], the
method of constant density radial segments was used, and especially in the papers by Gutierrez
et al. [6] and Bala Subrahmanyam et al. [7], the axisymmetric vibrations of annular membranes
with linearly, quadratically, and cubically varying radial density were analyzed and the effect of
the density variation to eigenvalues were investigated.
Moreover, asymmetrical structures, such as a ring or a shell with slight local deviation, have

been analyzed. Hong and Lee [8] obtained an exact solution of circular rings with a small local
deviation using a new method, without any trial functions for mode shapes and the use of finite
elements. Chung and Lee [9] developed a new conical ring element used in connection with FEM
in order to consider the effects of slight local deviations from an axisymmetric ring, and analyzed
the free vibrations of a nearly axisymmetric shell structure such as a Korean bell, using this
element.
In electromagnetic theory, problems of this type are of deep interest. In Ref. [10],

electromagnetic fields in structures composed of inhomogeneous cylindrical layers were analyzed
using a propagator matrix approach. In Ref. [11], the finite-difference method was used to make
the full-wave analysis of the generalized microstrip line on an inhomogeneous anisotropic
substrate.
In this paper, an analytical study is made to investigate the natural frequencies and mode

shapes of acoustic cavities with locally non-uniform media. The exact solution of the annular
cavities with the media deviation only in the circumferential direction is obtained using the
Laplace transform of the eigenvalue problem and the radial dependence is disregarded. The
validity of this approach is examined through finite element analysis and experiments. Based on
the solution, the effects of local variations of acoustic properties to global modal characteristics
were evaluated through several simulations. The presented analysis can be applied to the
structural-acoustic coupling problems of annular ducts.

2. Theoretical formulation

The wave equation of an acoustic cavity with local deviation in media is given as [12,13]

r �
1

r0
rp

� �
�

1

B0

@2p

@t2
¼ 0; ð1Þ

where p denotes the acoustic pressure in the cavity, and c0; r0 and B0 are the speed of sound,
density, and bulk modulus of the medium, respectively. If the acoustic variation in the axial
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direction of the cylinder is ignored, the dual cylinder model can be simplified to the two-
dimensional annular model as shown in Fig. 1. If it is assumed that the width of the annular cavity
is sufficiently small in comparison with its radius, the acoustic variation in the radial direction is
ignored and only that in the circumferential direction is considered.1

When the properties of the medium in y1pypy2 are different from those of the other part as
shown in Fig. 1, the density, speed of sound, and bulk modulus are represented as follows:

r0 ¼ ru þ rafHðy� y1Þ �Hðy� y2Þg;

c0 ¼ cu þ cafHðy� y1Þ �Hðy� y2Þg; ð2Þ

B0 ¼ Bu þ BafHðy� y1Þ �Hðy� y2Þg;

where Hð�Þ is the Heaviside unit step function, and r; c and B are the density, speed of sound, and
bulk modulus, respectively. The subscript ‘‘u’’ denotes uniform properties of a large part of the
medium and ‘‘a’’ denotes added properties of the deviation part. Since the radial variation is
ignored, we can represent Eq. (1) as follows:
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As a matter of convenience, 1=r0 and 1=B0 in Eq. (3) are transposed to Eq. (4)

rn

0 ¼
1

r0
¼

1

ru þ raðH1 �H2Þ
¼ rn

u þ rn

aðH1 �H2Þ;

Bn

0 ¼
1

B0
¼

1

Bu þ BaðH1 �H2Þ
¼ Bn

u þ Bn

aðH1 �H2Þ;

Rr = r�

1�� =

2�� =

Local deviation 

of media

Acoustic cavity

Fig. 1. An annular cavity with local deviation of medium.

1Numerical analyses and physical experiments shown in other sections of the paper corroborate this assumption for a

certain range of the geometric parameters. The validity of this assumption is shown in the appendix.
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If Eq. (4) is substituted into Eq. (3), the equation of motion is
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� r2Bn

0
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Assuming pðy; tÞ ¼ PðyÞejot and replacing coefficients of Eq. (5) with Eq. (4), the eigenvalue
problem is derived as

frn

u þ rn

aðH1 �H2ÞgP00 þ rn

aðd1 � d2ÞP0 þ r2o2fBn

u þ Bn

aðH1 �H2ÞgP ¼ 0; ð6Þ

where

P0 ¼ dPðyÞ=dy; P00 ¼ d2PðyÞ=dy2; 0pyp2p; 0py1py2p2p;

Hi ¼ Hðy� yiÞ; di ¼ dðy� yiÞ ði ¼ 1; 2Þ:

Eq. (6) is the governing equation of motion for an annular cavity with a local deviation of
media. Matching boundary conditions, that is, continuity conditions of acoustic pressure and
velocity at the arbitrary position are represented as

PðyÞ ¼ Pðyþ 2pÞ; V ðyÞ ¼ Vðyþ 2pÞ: ð7Þ

Also, the pressure and velocity should be continuous at y ¼ y1: If we denote yþ1 and y�1 as the
limits of y1 þ e and y1 � e as e approaches zero, the continuity conditions

Pðyþ1 Þ ¼ Pðy�1 Þ; P0ðyþ1 Þ ¼
ru þ ra

ru

P0ðy�1 Þ ð8Þ

must be satisfied, and the continuity conditions at y ¼ y2 are analogous.
Substituting continuity conditions (7) and (8) into Eq. (6), the Laplace transform [14] of Eq. (6)

is as follows:

ðs2 þ Z2Þ %PðsÞ ¼ sPð0Þ þ P0ð0Þ þ fsrr
#P0ðy0Þ þ Z2Br

#Pðy0Þge�sy0 ; ð9Þ

where

Z ¼ ro=cu; rr ¼ ra Dy=ru; Br ¼ Ba Dy=ðBu þ BaÞ;

#PðnÞðy0Þ ¼
PðnÞðy�1 Þ þ PðnÞðyþ2 Þ

2
ðn ¼ 0; 1Þ: ð10Þ
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Using the inverse Laplace transform, we obtain the following equation:

PðyÞ ¼ A cos Zyþ B sin ZyþHðy� y0ÞfC cos½Zðy� y0Þ� þ D sin½Zðy� y0Þ�g; ð11Þ

where

A ¼ Pð0Þ; B ¼ P0ð0Þ=Z; C ¼ rr
#P0ðy0Þ; D ¼ BrZ #Pðy0Þ: ð12Þ

If we apply the matching boundary conditions (7) to Eq. (11), the result is

cosð2pZÞ � 1 sinð2pZÞ

�sinð2pZÞ cosð2pZÞ � 1

" #
A

B

 !
¼ �

cos½Zð2p� y0Þ� sin½Zð2p� y0Þ�

�sin½Zð2p� y0Þ� cos½Zð2p� y0Þ�

" #
C

D

 !
: ð13Þ

From Eq. (13), two forms of the solutions are considered. First, when the determinant of the
2 2 matrix of the left side is zero, Z is an integer. In this case, C and D become zero, so that

PðyÞ ¼ As sin½nðy� fsÞ�; ð14Þ

where As and fs are constants. If rra0; then #Pðy0Þ ¼ #P0ðy0Þ ¼ 0; therefore only the trivial solution
will be obtained. If rr ¼ 0 and Bra0; then #Pðy0Þ ¼ 0; therefore the solution of PðyÞ ¼
As sin½nðy� y0Þ� is obtained. The second case is when the determinant is not zero, that is, Z is not
an integer. In this case, A and B in Eq. (13) can be expressed as functions of C and D: Then from
Eq. (11), we obtain

PðyÞ ¼ �
sin½Zðy� y0 þ pÞ�

2 sinðpZÞ
C þ

cos½Zðy� y0 þ pÞ�
2 sinðpZÞ

D

þ Hðy� y0Þ C cos½Zðy� y0Þ� þ D sin½Zðy� y0Þ�f g: ð15Þ

Using pressure equation (15), #Pðy0Þ and #P0ðy0Þ defined in Eq. (10) are obtained as follows:

#Pðy0Þ ¼
D cos½Zðp� Dy=2Þ�

2 sinðpZÞ
; #P0ðy0Þ ¼ �

CZ cos½Zðp� Dy=2Þ�
2 sinðpZÞ

: ð16Þ

If C and D in Eq. (12) are substituted in Eq. (16), we obtain the final equation of this
problem

pðZÞ � 1 0

0 qðZÞ � 1

" #
#Pðy0Þ
#P0ðy0Þ

 !
¼

0

0

 !
; ð17Þ

where

pðZÞ ¼
BrZ cos½Zðp� Dy=2Þ�

2 sinðpZÞ
; qðZÞ ¼ �

rrZ cos½Zðp� Dy=2Þ�
2 sinðpZÞ

: ð18Þ

If #PðyÞ ¼ #P0ðyÞ ¼ 0; then Eq. (17) has the trivial solution. Therefore in order to obtain the non-
trivial solution, the following equation must be satisfied:

fpðZÞ � 1gfqðZÞ � 1g ¼ 0: ð19Þ
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First, when pðZÞ � 1 ¼ 0; the natural frequencies can be obtained from Z’s that are the roots of
this equation, and the normal mode shapes result in the following forms:

PðyÞ ¼
cos½Zðy� y0 þ pÞ�

2 sinðpZÞ
þHðy� y0Þ sin½Zðy� y0Þ�

� �
D: ð20Þ

Next when qðZÞ � 1 ¼ 0; the normal mode shapes are

PðyÞ ¼ �
sin½Zðy� y0 þ pÞ�

2 sinðpZÞ
þHðy� y0Þ cos½Zðy� y0Þ�

� �
C: ð21Þ

With respect to the diameter passing through the local deviation at y0; Eq. (20) represents
symmetric modes and Eq. (21) asymmetric modes. Only if rr ¼ 0; the asymmetric modes are

PðyÞ ¼ As sin½nðy� y0Þ�: ð22Þ

3. Verification

The proposed method was validated by comparing the natural frequencies and mode shapes
obtained from this method to the results from FEA and modal test. Mass and stiffness effects of
local deviation upon system characteristics were verified by FEA, and the combined effect was
also verified by modal test for an actual cavity.

3.1. Verification of the mass and the stiffness effects

An annular cavity with the geometry and properties shown in Table 1 was analyzed to verify the
mass and stiffness effects of the local deviation. In FEA, the cavity was modelled by 7920 nodes
and 7200 elements. The position of deviation was 901, and its size was 31.
To verify the mass effect, a cavity with the density deviation of 10 times bigger than the other

part was analyzed by the proposed method and a commercial FEA program (SYSNOISE). The
results from the two methods agree with each other very well as shown in Table 2 and Fig. 2.
A cavity with the sound-speed deviation of 10 times bigger than the other part was also used to

verify the stiffness effect. The results are compared in Table 3 and Fig. 3. It is found that the
results from the proposed method agree well with the FEA results.

Table 1

Geometry and acoustic properties of an annular cavity with locally non-uniform medium for verification of the

proposed method

Geometry Radius 1m

Position of local deviation 901

Size of local deviation 31

Property Ambient 1.21 kg/m3, 340m/s

Density variation ( 10) 12.10 kg/m3, 340m/s

Sound-speed variation ( 10) 1.21 kg/m3, 3400m/s
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As shown in Figs. 2 and 3, the center point of the deviation area is an anti-nodal point for
symmetric modes, but a nodal point for unsymmetrical modes.

3.2. Verification in the case of a real physical system

The experimental setup of a real system is shown in Fig. 4. Geometries of the acryl cavity and
experimental equipments are summarized in Table 4. The material used in the deviation is a type

Table 2

Natural frequencies of the annular cavity with local density deviation of medium

Mode FEM (Hz) Proposed method (Hz) Difference (%)a

1-1 50.433 50.411 �0.044

1-2 54.545 54.522 �0.042

2-1 101.263 101.217 �0.045

2-2 109.090 109.043 �0.043

3-1 152.705 152.632 �0.048

3-2 163.636 163.566 �0.043

aDifference (%)={(proposed method)�(FEM)}/(FEM) 100.

(a) FEM (b) Proposed method(a) FEM (b) Proposed method

Fig. 2. Normal mode shapes of the annular cavity with local density deviation of medium (W: deviation position, K:

nodal point).

H.G. Choi et al. / Journal of Sound and Vibration 266 (2003) 967–980 973



of cream, and its density and speed of sound are 266 kg/m3 and 440m/s, respectively. The density
is measured as the mass per unit volume, and the speed of sound is calculated from the results of
the transmission loss measurements. The length of the deviation is 17mm.
The results obtained by the analysis and the experiment are shown in Table 5. The equivalent

radius used in the analyses is 270mm and the equivalent size of the deviation is 3.61. As shown in
Table 5, the two results are very close within 1% error, therefore the proposed method is verified
as a method suitable to demonstrate the effects of the deviation.

Table 3

Natural frequencies of the annular cavity with local stiffness deviation of medium

Mode FEM (Hz) Proposed method (Hz) Difference (%)a

1-1 54.136 54.113 �0.042

1-2 54.586 54.563 �0.042

2-1 108.273 108.225 �0.044

2-2 109.173 109.126 �0.043

3-1 162.412 162.338 �0.046

3-2 163.760 163.690 �0.043

aDifference (%)={(proposed method)�(FEM)}/(FEM) 100.

Fig. 3. Normal mode shapes of the annular cavity with local stiffness deviation of medium (W: deviation position, K:

nodal point).
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4. Parametric studies

To illustrate the effects of the density and sound-speed variation in the deviation on the acoustic
characteristics of cavities, parametric studies are conducted. The position of the deviation is 901,
and its size is 31. Changes of natural frequencies and mode shapes according to the variation of
density and sound speed are investigated for the first and second mode pairs.

Fig. 4. Schematic diagram of the experimental setup for verification of the application of the proposed method to real

systems.

Table 4

Geometry of a cavity and experimental equipments for acoustic modal test

Geometry Acoustic cavity Inner diameter 500mm

Outer diameter 580mm

Height 153mm

Acryl structure Panel thickness 15mm

Cylinder thickness 10mm

Outer diameter 500mm

Outer diameter 600mm

Equipment Microphone Bruel & Kjaer type 4196

Speaker Diameter 6 inch

Microphone amplifier NEXUS conditioning amplifier 2690A0S4

Speaker power amplifier Inkel stereo integrated amplifier AX7030R

Front-end SCADAS II SG206-B

Modal software LMS/CADA-X ver3.4
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4.1. Modal changes due to the mass variation

Natural frequency change according to the variation of density in deviation is shown in Fig. 5,
and mode shapes are plotted in Fig. 6. In the figures, the natural frequency ratio is defined as the
ratio of the natural frequency of the cavity with deviation to the first natural frequency of that
without deviation, and the density ratio as a ratio of the density in deviation to the ambient
density.
When density ratio decreases to less than 1, (2,0) and (4,0) symmetric modes—an anti-nodal

point is located in the deviation—are changed similarly to (1,0) and (3,0) modes, respectively, but
anti-symmetric modes—a nodal point is located in the deviation—do not change. To the contrary,

Table 5

Natural frequencies of the experimental annular cavity with locally non-uniform medium from test and proposed

analysis

Mode Proposed method (Hz) Experiment (Hz) Difference (%)a

1-1 (1,0) 116.898 117.618 �0.612

1-2 (2,0) 202.436 204.407 �0.964

2-1 (3,0) 309.677 311.696 �0.648

2-2 (4,0) 404.875 407.332 �0.603

3-1 (5,0) 509.757 513.981 �0.822

3-2 (6,0) 607.318 606.786 +0.088

aDifference (%)={(proposed method)�(experiment)}/(experiment) 100.
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Fig. 5. Natural frequency ratios with variations of the density in deviation.
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when density ratio increases to greater than 1, (2n; 0) anti-symmetric modes are changed to
(2n � 1; 0) modes, but symmetric modes do not change. In other words, an anti-node at deviation
changes to a node as density ratio decreases, and a node at deviation changes to an anti-node as
density ratio increases.

4.2. Modal changes due to the stiffness variation

Natural frequency changes according to the variation of sound speed in deviation are shown in
Fig. 7, and the mode shapes are plotted in Fig. 8. Unlike the mass effect, when the sound-speed
ratio only decreases, (2n; 0) symmetric modes change similarly to (2n � 1; 0) modes, but modes do
not change in the other case. Therefore the decrease makes the deviation an open boundary.

5. Conclusions

In this study, we investigated an analytical method to illustrate natural frequencies and mode
shapes of acoustic cavities with a local deviation. Based on the wave equation that can represent
the local deviation in media, the Laplace transform was used to obtain an exact solution. Local
deviations were mathematically modelled using the Heaviside step function.
For an annular cavity with a local deviation of media, the theoretical analysis, FEA and

experiments were conducted and the theoretical analysis was verified by comparing their results.

Fig. 6. Normal mode shapes with variations of the density in deviation (X: deviation position, K: nodal point).
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From parametric studies, we investigated the effects of the density and sound speed in deviation
on acoustic characteristics—natural frequencies and symmetric/anti-symmetric mode shapes of
cavities.
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Appendix A

To verify the validity of this assumption, eigenvalues of an annular cavity are
obtained analytically and by FE and varying a geometric parameter, that is, a ratio of
its width to its radius from 10% to 100% with an interval of 10%. The neutral radius
of the annular cavity is 1m, and the density and the speed of sound are 1.21 kg/m3 and
340m/s, respectively. The simulation results are shown in Table 6. From the results, it can
be seen that when the ratio of the width to the radius is in the range of less than about 40%,
the acoustic variation in the radial direction can be ignored and only that in the circumferential
direction is considered.

Appendix B. Nomenclature

p acoustic pressure
r density
c speed of sound
B bulk modulus
t time
r; y polar co-ordinates
Hi Heaviside step function of Hðy� yiÞ
di delta function of dðy� yiÞ
y1; y2 starting and ending position angle of the deviation of media, respectively
Dy angle of the deviation of media
R radius of the centerline of the annular cavity

Table 6

Comparison of eigenvalues of an annular cavity obtained analytically and by FEA

w/ra (2,0) mode (Hz) Error (%)b

Analytical FEA Analytical FEA

0.1 54.135 54.137 0.042 0.045

0.2 54.202 54.204 0.165 0.169

0.3 54.311 54.313 0.366 0.369

0.4 54.457 54.459 0.636 0.640

0.5 54.635 54.638 0.966 0.970

0.6 54.837 54.839 1.339 1.343

0.7 55.050 55.052 1.732 1.717

0.8 55.260 55.262 2.120 2.124

0.9 55.447 55.449 2.465 2.469

1.0 55.587 55.589 2.724 2.729

aw=r ¼ width=radius:
bReference for error estimation is 54.113Hz obtained using this assumption.
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